NEUROSCIENCE EXPERIMENTS FOR MATHEMATICS
EDUCATION

FRANK QUINN

ABSTRACT. These experiments are explicit, designed to give clear outcomes,
and have significant impact on educational practice.

The first group explores difficulties caused by mixing cognitively distinct
activities. Topics are multiplication of polynomials, word problems, and cus-
tomary notation and usage. The second group explores subliminal (invisible or
unanticipated) learning. Topics are algebra in elementary arithmetic, learning
multiplication facts, and kinetic reenforcement of function graphs.

For quite some time it has seemed that cognitive neuroscience should con-
tribute powerfully to math education, but this has not happened. This article
shows that a connection is possible. A companion article (Mathematics edu-
cation versus cognitive neuroscience) explores reasons for the failure to date;
there seem to be deeply rooted structural problems.
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1. OUTLINE

These experiments contrast standard educational approaches that seem to cause
problems, with alternatives adapted to mathematical and cognitive structure. Many
of the alternatives have been used successfully in individual cases, so the job of
neuroscience is not so much to detect the effects as to quantify them and clarify
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the mechanisms. Moreover, the tools of neuroscience are difficult and indirect so
specific tasks are designed to maximize expectation of clear outcomes.

The specific examples might be thought of as opening moves in collaborations,
addressed to neuroscientists. They are sensible of the needs and limitations of
neuroscience, and informed by neuroscience studies, but for the most part are not
specific about neuroscience protocols because this is the job of potential collabora-
tors. Cognitive, mathematical, and educational issues are discussed in some detail
because these are responsibilities of the mathematical-educational partner.

These studies should have significant implications for educational practice. A
companion essay [16](c) explores why educationally-oriented neuroscience studies
to date have had so little impact. In this context, a motivation for developing high-
impact examples was to test this picture, and in particular see if there are barriers
not yet identified.

1.1. Background. A few clarifications about background and constraints for these
proposals.

1.1.1. Diagnostic experience. These proposals draw on extensive diagnostic work
with students. The format is a session in which a student describes work in which
something has gone wrong, while the helper listens and diagnoses the source of the
problem. The helper then (briefly) explains the error and how to avoid it in the
future. This gives a much finer-grained view of learning and its problems than does
traditional teaching.

A consequence is that the concerns here are only indirectly related to teach-
ing, and are often inconsistent with mainstream (teaching-oriented) ideas about
learning.

1.1.2. External working memory. Mathematics uses written scratch work as exter-
nal working memory, and many neural processes are adapted to this.

Suppose, for example, that one step in a procedure collects numbers to be added,
and the next step is to add them. The first step is purely symbolic, unconcerned
with specific number properties. The second step requires processing them as num-
bers, but little or no engagement of organizational or symbol-manipulation facilities.
The two tasks use different neural processes. Written work is used for reformatting
(different processes read symbols in different, task-appropriate ways) and inter-
process communication. This is much more efficient and accurate than trying to
do it internally.

Consequences for neuroscience studies are:

e Subjects must be able to do scratch work during all procedures.

e A time-stamped record of external work provides a window on internal
activity.

e One goal is to understand the interactions between neural activity and
external memory. Effectiveness can often be substantially improved by
optimizing procedures and notation for external-memory use.

1.1.3. Mathematical structure. This is a cautionary note. Mathematical work is
both enabled and constrained by mathematical structure, and experimental design
and interpretation must be carefully adapted to this structure. The discussion here
only hints at the constraints involved, and these should be fully understood before
modifications or variations are undertaken.
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1.2. Cognitive interference, outline. The four examples in §2 concern inter-
ference between subtasks of a task. In a nutshell, mixing or switching between
subtasks can reduce success and limit scope of application. In some cases proce-
dures or algorithms could be reorganized to separate or eliminate such tasks, but
this is constrained by mathematical structure and the need to avoid introducing
new cognitive difficulties. The challenge is to identify interference severe enough to
need change, in circumstances where structure permits it.

1.2.1. Polynomial multiplication. The example in §2.1 concerns conflict between
the organization and calculation aspects of multiplication. The experiment uses
multiplication of polynomials by high-school or beginning college students, com-
paring performance with standard (mixed-task) methods and a task-separated al-
gorithm. The immediate outcome should be better methodology for polynomials.
A long-term goal is better methodology for multi-digit multiplication in elemen-
tary mathematics, and this is taken up in §3.1. The polynomial version provides a
simpler (in some cognitive senses) and slower (for imaging purposes) model.

The context for the study is task switching between two basic task types. There is
an extensive literature on mechanisms and costs of switching in very simple tasks,
see the review [12]. The ACT-R computer model [1], [2] has been extensively
tested seems to model some elementary tasks reasonably well, c.f. [20]. The work
done so far is only marginally relevant, however. It corresponds, roughly speaking,
to discrete behavior of matter at very small scales, while we are concerned with
statistical behavior at significantly larger scales.

A useful general conclusion from cognitive psychology [14] and clearly visible in
small-task studies, is that our thinking is essentially single-track. Ample working
memory and frequent switching between superficial tasks give the impression of
“multitasking”, but this is mostly an illusion [24][c]. Specifically, if we switch
from task A to a different task B but know we will shortly be doing A again,
we usually cannot economize by keeping task-A instructions loaded but off-line.
Instead we have to flush task-A material, load B, and when B is complete, reverse
the procedure. Further

e “Flushing” task A may involve inhibiting task-A instructions, not just emp-
tying a buffer. Some errors (e.g. adding instead of multiplying) result from
incomplete inhibition.

e Residual effects of this inhibition can slow or complicate reloading for the
next A task. In other words, repeated switching reduces the effectiveness
of working memory [11]

e Following an A task by another instance of A usually requires less reorga-
nization and has lower costs.

Algorithms with subtasks ABABAB. . .. usually cannot be reorganized as AAABBB
for mathematical reasons, but when it is possible it should have cognitive benefits.
The multiplication proposal is of this type.

1.2.2. Interference from customary usage. Customary usage often interferes cogni-
tively with mathematical work. This is usually easy to fix by changing notation,
avoiding customary forms, or introducing translation as an explicit separate step.
But customary usage is, essentially by definition, transparent to adults. As a result
the problems caused by it are invisible, and attempts to deviate from customary
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usage make adults uncomfortable and are resisted. The role of neuroscience is to
help locate these problems, and unequivocally identify them as problems.

For example v/A is a customary notation for A'/2. The exponential form fits into
general patterns and is usually easier to manipulate. The customary notation alerts
us to the possibility of using special properties of square roots. The best practice in
this case seems to be to use the customary notation so we get the special-property
alert, but teach students that in most problem types the first step should be to
rewrite it in exponential form. In contrast the customary notation %/A for cube
roots does not have benefits that compensate for translation overhead. This should
always be written as A'/3.

§2.3 concerns rather severe problems with customary use of parentheses. The
problem is discussed because it is important and effects several other proposals. No
specific experiment is proposed, however, because it has been difficult to find one
with clear and useful outcomes.

§2.4 concerns the translation overhead of irregular customary names for integers
(e.g. ‘thirteen’ for 13). Cross-cultural and imaging studies suggest that short-term
working memory is mostly verbal, even when working with numbers. For instance,
the total length of names for things is often a stronger limit than the number of
things. Another clue comes from the additional difficulty children have in learning
to count in languages with irregular customary number names.

A conclusion is that counting and arithmetic might—in some languages at least—
be simplified by the use of “math names” for numbers. The experiment explores
this through its effect on iterated addition.

1.2.3. Word problems. The example in §2.2 concerns cognitive interference between
the modeling and analysis aspects of word problems. The experiment compares
performance and neural activity in the standard (mixed-task) approach and a task-
separated modeling approach. The short-term goal is to show that the educational
approach is counterproductive. The longer-term goal is to explore ways to use word
problems effectively in elementary education.

Educators see word problems as essentially mathematical; a different format
rather than a different activity. As a result educators encourage a gestalt approach
in which students “develop strategies” to work directly with the formulation of the
problem. Students find this hard, and accessible problems have either mathematical
or modeling component (or both) trivial.

Mathematicians and professional users of mathematics divide real-world applica-
tions into two steps: ‘modeling’ translates physical data to a self-contained symbolic
formulation called ‘the model’, and then the model is analyzed mathematically.
These two steps use very different methods and, technically, the modeling step
is not mathematical. Diagnostic experience with students suggests that modeling
and analysis are also quite different cognitively. Mixing seems to cause interfer-
ence considerably stronger than that seen in multiplication, and success in science,
engineering, and related mathematics, requires use of task-separated modeling.

1.3. Subliminal learning and reenforcement, outline. We are concerned with
learning that takes place during an educational activity, but that is invisible to the
student, and frequently to educators as well. There are two variations: subliminal
learning from the content; and learning that depends in an unrecognized way on
the human interaction aspect (e.g. kinetic or verbal) of the activity.
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When mathematics is done by hand, a lot of activity comes as packages that are
activated by simple goals. New methods—especially technology—cause these pack-
ages to come apart, and important subliminal learning may be lost. For instance
“find 365 x 86” requires a lot of neural activity when done by hand and rather less
when a calculator is used. Is the extra activity pointless, or are there important
benefits of the package rather than the number obtained?

Diagnostic work with students suggests that there is quite a lot of subliminal
learning in by-hand elementary mathematics that is lost in calculator curricula
[16](d). A goal of the experiments is to fix this: understand instances well enough
to design programs that use technology and also provide this learning. Curiously,
this should also enable improvement of traditional programs. Subliminal learning
in by-hand work is usually accidental and inefficient. Better understanding should
enable more efficient approaches, either with or without technology.

The role of neuroscience is this: neural effort in well-learned skills is usually
focused in a small number of regions. Early attempts usually recruit much wider
activity. Development requires exercising the necessary regions and connections
between them, and also requires suppression of recruitment of unneeded regions.
Neural activity alone is not a definitive guide to learning, but it gives excellent
clues:

e Activities that exercise appropriate regions probably contribute to skill de-
velopment.

e Activities that do not engage these regions cannot contribute much to skill
development.

e Too much emphasis on activities that consistently engage unnecessary re-
gions may impede skill development.

1.3.1. Subliminal algebra in integer arithmetic. This experiment concerns sublimi-
nal internalization of algebraic structure from by-hand integer multiplication. The
point is that the symbols we write to represent numbers are symbols, not numbers,
and by-hand arithmetic involves a lot of symbol manipulation. Students seem to
internalize some of the algebraic structure used in these manipulations.

The place-value notation presents integers as polynomials in powers of ten, with
single-digit coefficients. For instance 438 = 4 - 22 + 3 - 2! + 8 - 20, with z =
10. The standard algorithms for multi-digit multiplication essentially multiply the
corresponding polynomials and then evaluate at 10.

The experiment in 3.1 has two parts. The first compares neural activity in 3 x 3-
digit multiplication by hand, and with a calculator. An objective is to see to what
extent the hand work recruits neural regions used in algebra, and more specifically
in polynomial multiplication.

The second part explores the use of a task-separated algorithm modeled on the
polynomial algorithm of §2.1. The first version is for hand use. It requires more
writing than the traditional algorithm but should display the structure more clearly
and be easier to use accurately. The second version uses a calculator, but in a way
that still requires expansion and display of algebraic structure. The objectives
are to assess potential cognitive benefits by comparing neural activity with that
associated to standard by-hand multiplication.

There are many studies of numerical multiplication, c.f. [9, 20]. Unfortunately
conceptual and methodological weaknesses [21], [16](c) render these only marginally
relevant.
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1.3.2. Subliminal learning of number facts. A certain amount of transparent men-
tal arithmetic is vital for learning in algebra and beyond, as I explain below. A
consequence is that calculators cannot substitute for automatic recall of single-digit
multiplication facts. But this does not mean we are stuck with rote memorization.
The proposal in §3.2 section explores a subliminal approach using the algorithm
described in §3.1.

The reason mental arithmetic is necessary is that examples illustrating math-
ematical procedures almost always have arithmetic subtasks. In practice we can
contrive these subtasks to be fairly simple; see for instance the example used to
illustrate the task-separated polynomial multiplication algorithm in §2.1.2. Algo-
rithms are usually learned correctly as long as the arithmetic is complex enough to
avoid misleading numerical coincidences. After the algorithm is internalized it can
be used for arithmetically complex problems, even if coefficient calculations require
calculators or extensive scratch work but for initial learning, transparent mental
arithmetic is essential.

The amount of mental arithmetic needed is a compromise between what students
can learn relatively easily, and how simple the examples can be contrived to be and
still effectively illustrate structures. The standard compromise is that the following
should be fully transparent:

(1) Addition and subtraction of single-digit integers.
(2) Addition of four or five single-digit integers, or a three-digit and a two-digit
integer!.

(3) Multiplication of a single-digit and a two-digit integer.
In addition, multiplying a one-digit and a three-digit integer should not be a dis-
traction, though it need not be fully transparent. Multiplying two 2-digit integers
is cognitively more complex (see §2.1.1) but should still not disrupt the train of
thought. We can almost always contrive to avoid larger multiplications. Students
should certainly be able to do them, but transparency is not needed.

Finally, the formal structure of arithmetic should be automatic enough that a

few symbols will not cause problems.

1.3.3. Kinetic reenforcement in graphing. This experiment concerns reenforcement
of internalization of geometric structure of function graphs, by the kinetic aspect
of by-hand graphing. In non-technology programs, both assignments and testing
require drawing by hand. In programs using technology, student work has visual
outcomes, and testing is also usually visual (choose the correct graph among a
number of alternatives).

Diagnostic experience suggests that many graphing-calculator trained students
cannot either verbally describe or qualitatively sketch standard curves. When they
do try to draw pictures they often reproduce a calculator display, to scale, with typ-
ical poor choices of range and microscopic features of interest. In other words they
have not internalized the qualitative geometric structure. It seems that the kinetic
aspect of drawing powerfully (and subliminally) reenforces learning of qualitative
structure, and some students seem unable to learn without this reenforcement.

A general context is that serious learning benefits from, and often requires, active
reenforcement. Recent studies ([18], [19]) report that young children do not learn

LA better algorithm would probably put larger addition problems within easy reach, see §2.1.5,
but this does not seem to be a bottleneck in actual use.
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from videos. To learn vocabulary, for instance, they must say the word, not just
hear it. Verbal reenforcement seems to be more effective when ‘social cognition’
facilities are engaged by the presence of an attentive human, and this may be the
primary mechanism in some cases. None of this should be a surprise. Children in
rural areas learn their local dialects but usually not (in the US) standard English,
even though they hear as much or more standard English on television. Similarly,
what a child sees makes far less impression that what he draws or writes himself.

The experiment uses two versions of a brief lesson on qualitative graphs of sums
of functions. The first version uses a typical visual computer-graphic approach,
and the second a hand-drawing approach. Students are quizzed using version-
appropriate methods: visual multiple-choice in the first case, drawing in the second.
Finally they are tested with the opposite methodology.

The questions concern similarity and differences in neural activity in the two
modes, and transfer of learning from one mode to the other. Diagnostic experience
suggests that kinetically-reenforced learning should transfer, visual learning usually
will not. This experiment is more complex than the others because the questions
concern neural activity during learning, not just during use of a learned procedure.

This is the end of the outline.

2. COGNITIVE INTERFERENCE

Mixing different tasks often slows and degrades performance in both. It seems
likely that such interference has a neural basis. Understanding this should enable
design of algorithms and procedures better adapted to humans use, mainly by sep-
arating internal tasks and using scratch work for reformatting and high-precision
interprocess communication. The proposals address two instances in which inter-
ference has been observed: multiplication and word problems. See §1.2 above for
an outline.

2.1. Cognitive interference in multiplication. There are two important cases
that use essentially the same algorithm: multi-digit integer multiplication in ele-
mentary school, and polynomial multiplication in high school and college. We begin
with polynomials because:

e the polynomial version is actually a bit simpler because there are no over-
flow problems associated with converting polynomial-like outcomes into
place-value integer notation;

e the separated polynomial tasks take long enough to be imaged by fMRI,
and this is unlikely with integer multiplication;

e more-extensive scratch work (external working memory) can be used to
correlate cognitive and neural activity;

e high-school or college students are more consistent and cooperative exper-
imental subjects;

e arithmetic skills of older students are already well-established and stable,
and should produce clearer and more consistent signals.

Another reason to begin with polynomials is that the problem seems to involve a
genuine limit on human ability: experienced professors of mathematics seem to have
as much trouble as students with the mixed-task algorithm, and get as much benefit
from the task-separated version. This should mean that the underlying neural issues
should be relatively uniform and clear. In contrast, the interference experienced
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by children with multi-digit integer multiplication can be eventually be managed,
so may have a developmental component. In fact there are likely to be a number
of different difficulties, and before we can assess any of them we must understand
the mature endpoint. Further, the proper course of action may be unclear. If
the problem is only developmental then finding ways to speed development would
probably be more useful than tinkering with algorithms.

The integer case is discussed further in §3.1. Detailed mapping of component
functionality is discussed in [10](e).

2.1.1. Sample problems. These examples show escalating conflict between organi-
zation of the polynomial structure, and coefficient arithmetic. Coeflicients are con-
trived so individual operations are easy; difficulties come from mixing rather than
from individual operations.

1) Write (322) ((2 — a)2®) as a polynomial in z.
Note that “simple arithmetic” in coefficients may include symbols, to emphasize
that we need transparent internalization of structure (associative, distributive etc.),

not just number facts. This example has one coeflicient operation and one polyno-
mial operation: they are perforce separated and there is little conflict.
2) Write (322 — 2 + 5a) ((2 — a)2®) as a polynomial in z.

The result has three terms. The standard practice is to do coefficient arithmetic
as each term is generated, so there are two arithmetic interruptions of the poly-
nomial procedure. There is relatively little interference, partly because there are
few interruptions. Another reason is that the structure of first term provides a
template for sequential organization of the task. Minor interference is suggested
by more-frequent sign mistakes with the —1 coefficient on x in the first term, as
compared to errors in isolated arithmetic tasks.

3) Write (322 — x + 5a) (23 + (2 — a)2? — a) as a polynomial in x.

Simple expansion gives nine terms, with eight interruptions for coefficient arith-
metic. Moreover the data is a 3 x 3 array so a strategy for organization as a
sequential task must be devised. Finally, terms with the same coefficient have to
be collected and combined. The success rate is low and errors in both organiza-
tion (missed terms) and arithmetic are common. The difficulty comes from the
algorithm rather than the problem itself, however, as we see next.

2.1.2. Task-separated algorithm. The basic plan is to separate different tasks as
completely as possible. In polynomial multiplication, organizational work related
to the polynomial structure should be completely separated from coefficient arith-
metic, and multiplication and addition separated in the arithmetic. This is illus-
trated with problem (3) above: write

(32% — z + 5a)(2® + (2 — a)z? — a)

as a polynomial in x.

Step 1: A preliminary scan shows that the output will be a polynomial of
degree 5. Set up a template for this:

z°( )+ z( ) + 2 ) + 2% )+ 2! )+ 2%( )
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Step 2: Fill in the blanks one at a time. For example, the terms with total
exponent 3 are obtained as follows: the highest-order term in the first
factor is z%; record its coefficient (3). The complementary exponent is 1,
but there is no 2! term in the second factor so we record 0. Move to the next
lower power in the first factor and the next higher in the second, and record
coefficients (—1)(2—a). Continue to get ((3)(0)+(—1)(2—a)+(5a)(1). Put
everything in parentheses, and not do any arithmetic on the fly. Do not, for
example, omit the 3 coefficient on x? because there is no complementary
term in the second factor, and do not write (5a)(1) as 5a.

e This enables reading the coefficients only as strings to be copied, with
no arithmetic significance. This reduces cognitive overhead.
e Even completely trivial arithmetic requires a momentary change of
gears, and watching for an opportunity to do it is a distraction.
The outcome is:

2°((3)(1)) +2*((3)(2 — a) + (=1)(1)) +2°((3)(0) + (~1)(2 — a) + (5a)(1))+
2?((3)(—a) + (5a)(1)) + 2 ((-1)(~a)) + 2°((5)(~1))
Step 3: Do multiplications:
2°((3)(1)) +2*((3)(2 — a) + (~1)(1)) + 2*((3)(0) + (~1)(2 — @) + (5a) (1)) + ...
3 6—3a —1 0 —2+4a 5a

The process and notation is designed to avoid organizational activity: input
for each operation is in standard position in the visual field, the underbrace
specifies the input so it does not have to be reconstructed for other steps
or checking, and output is put in a standard place.

Step 4: Do additions.

2°((3)(1) + 2 ((3)(2 = a) + (=1)(1)) +2 ((3)(0) + (=1)(2 — a) + (5a)(1)) + ...
S—— —_— —— Y =

3 6—3a —1 0 —2+4+a 5a

5—-3a —2+6a

Again the process and notation minimize organizational activity that would
interfere with arithmetic.

2.1.3. Experiment. The subjects should be high-school students who have been
successful in a standard algebra curriculum, or students in first-year college calculus
(i.e. not remedial). Proficiency with problems like (2) above might be used as a
criterion. They should also be screened for dependence on calculators for basic
arithmetic (see below). They are asked to work problems similar to the one above,
using standard methods. They are then taught the task-separated version, and
after enough practice to become familiar with it, they are imaged working similar
problems with this methodology.

e To keep the picture clear the arithmetic should be kept minimal. Multipli-
cation of multi-digit integers, for instance, would produce a small version
of the entire process.

e Half the problems should have numerical coefficients, half have symbols in
the coefficients (as in the example).

e Subjects should be told that accuracy is more important than speed. Errors
due to speed or carelessness will mask significant features of more intrinsic
mistakes [17, 7, 0].
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e Scratch work should be videotaped and time-stamped, for correlation with
imaging results.

fMRI should provide general information about the areas used and the degree of
usage, c.f. [9, 20]. It would be useful if there is an easily-identified MEG or EEG
signature of major task switching—a mental shifting of gears—in the task-separated
versions, c.f. [22].

2.1.4. Calculator version. The core experiment concerns students with good man-
ual arithmetic skills. If resources permit, it can be expanded to include students
with similar proficiency but who use calculators for numerical work. Let them use
calculators as they like during the trials, and record this use. Expected differences
are described below.

2.1.5. Analysis. The basic plan is to look for neural and performance differences
between the standard and task-separated versions. The expectation (based on
diagnostic work with students) is that performance should be significantly better
with the task-separated version, and the hypothesized reason is that the task-
separated version reduces interference caused by arithmetic interruptions of the
polynomial organizational task. A qualitative picture should emerge reasonably
quickly. It might be possible to directly explore interruptions and their short-term
neural consequences by carefully correlating imaging with scratch work.

The above is the basic plan. We now discuss potential complications and refine-
ments.

First, there may be a sub-population with substantially better performance with
the modified algorithm. The goals are algorithms that benefit everyone when used
as the standard approach, but it is unlikely that everyone will benefit when they are
used as a retrofit. The cognitive interference signal should be clearest in the high-
performance group. Note that subjects cannot be screened in advance for quick
adaptation because the control experiment (using standard techniques) becomes
impossible after the modified algorithm is taught. Predictors of success found after
the fact, however, would certainly be useful.

Calculator arithmetic requires a significant attention shift and input/output pro-
cessing, and there are a great many discrete arithmetic tasks in these problems. It
is hard to imagine that calculator use could become so transparent that this would
not be a source of interference. The prediction, therefore, is that students who ac-
tually make substantial use of calculators during the trials will have lower success
with any form of these problems.

Next, if at all possible, individual variation in the task-separated version should
be investigated. Currently the statistical techniques used to analyze data have a
built-in assumption that everyone does these things in essentially the same way.
Variation is treated as noise. The data showing that multiplication facts are stored
in the angular gyrus using verbal memory, for instance, demonstrates that this is
the dominant mode. But is it really true that no-one uses visual memory for this?
Understanding variation in successful learning is essential for understanding all the
barriers to success, and the separated tasks may be long and uniform enough to
permit this. Again, students who use calculators are likely to have significantly
different characteristics.
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The number and nature of mistakes made is more significant than time required
to complete the tasks. Time measurements might be useful for comparing different
task instances done by one individual, however.

Finally, it will be very important to assess the effects of symbols in the coef-
ficients. The hypothesis suggested by behavioral data is that students who have
effectively internalized the symbolic structure of arithmetic should show little dif-
ference in either performance or neural activity. There is some support for this
in very simple tasks [2], [23]. Conversely, students who have not internalized this
structure, or who think of symbols and numbers as essentially different, will find
symbolic coefficients significantly more difficult. Most calculator users are likely to
be in this group.

2.2. Cognitive interference in word problems. The modeling and analysis
components of word problems seem to interfere when mixed, and this interference
is often very strong. This is explored through comparison of student work using
standard (mixed-task) and modeling (task-separated) procedures. See §1.2.3 for
discussion.

2.2.1. Sample problem. The following have the same mathematical core.

Food version: A basket contains six loaves of bread. Half of these are put
in another basket that already contains nine loaves. Then one-third of the
total contents of the second basket is put in the first. How much bread
ends up in the first basket?

Social version: Jen and Brad have six loaves of bread. Brad takes half with
him when he leaves to share everything with Angelia, who already has nine
loaves. Jen’s lawsuit against Brad and Angelia is settled by giving her
one-third of Brad and Angelia’s bread. How much bread does Jen end up
with?

Money version: A basket contains six dollars. Half of these are put in an-
other basket that already contains nine dollars. Then one-third of the total
contents of the second basket is put in the first. How much money ends up
in the first basket?

These are easy to model and solve, but difficult with the gestalt approach because
interpretation and calculation are mixed.

2.2.2. Task-separated (modeling) version. Let A denote the bread in the first bas-
ket, with subscripts 1,2, 3 corresponding to the three times. B; similarly denotes
the bread in the second basket. Translating the data for the beginning state gives:

Ag =6, Bp=9.
Changes that give the second state translate as:
Ay = Ag — %Ao, By =By + %AO.
Finally changes that give the third state give:
Ay = Ay + éBl, By = By — %Bl.

This is a symbolic form (model) suitable for mathematical analysis. After doing a
few of these they become immediately recognizable as short recurrence relations.
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Analysis proceeds in two stages; first substitute in two steps to reduce to a
numerical problem:
1 1 1 1 1 1 1
Ay =A1 4+ =By = (4 — =A —(Bg+ -A9)=6—=(6)+ =9+ =(6
2 1+31 (Ao 20)“‘3(04'2 0) 2()"'3(“‘2())
and finally do the the arithmetic. See §2.2.5 for discussion of cognitive and concep-
tual features.

2.2.3. Experiment. The subjects are high-school students who have been successful
in a standard algebra curriculum. They are imaged working word problems with the
standard reasoning-in-context approach. They are then taught the task-separated
version, and after enough practice to become familiar with it, they are imaged
working similar problems with this methodology. They should be asked to give
the model as part of the solution (to ensure actual separation), and some problems
should ask only for the model.

In both trials, problems to be worked should be interspersed with controls in
which students are asked only to identify problem type (food, social, etc.).

Finally, subjects should be interviewed before and after the imaging trials. Pre-
trial questions would concern attitudes toward word problems (enjoy, dread, etc.),
neutrally probe reasons (actually interesting, easy grades because the math is triv-
ial, believe teachers’ assertion that they are important, etc.), and ask the subject’s
impression of his general competence and success rate. Post-trial questions would
include feelings about task separation (helps, is a waste of time), and assess changes
in interest and feelings of competence.

There are two points to the interviews. First, is there a correlation between
reduced cognitive interference and increased interest or confidence? Second, as-
sertions about motivation and “real-life” relevance are used to justify current use
of word problems; there is essentially no mathematical justification because the
analytic aspects are trivial. It is therefore important to honestly assess student
motivation and feelings of “relevance”, and determine how a different approach
might effect them.

2.2.4. Analysis. Unseparated work should show extensive activity, probably includ-
ing prefrontal recruitment to sort out confusion from interference. Active areas
will probably depend on the nature of the problem, and different types should be
analyzed separately to see this. The social version, for instance, should engage
neural structures devoted to interaction with others of our species. Comparison
with type-identification versions should reveal activity specific to the mathematical
task. Questions:

e Do some types interfere with mathematical activity more strongly than
others (i.e. have lower success rates)?

e Do different types lead to differences in the mathematical components, as
revealed by subtracting type-identification responses?

e Is there systematic variation, for instance sex differences in responses to
social versions, or socioeconomic level effects in responses to food or money
versions? If so, how do these correlate with success rates?

Subtasks in unseparated work will have irregular timing and sequencing, and will
be hard to image. This is not a big problem.



NEUROSCIENCE EXPERIMENTS FOR MATHEMATICS EDUCATION 13

Task-separated versions should show clearly-defined shifts between modeling and
analysis. Questions are:

e How do the neural areas and degrees of activation compare to the non-
separated versions? For instance, are the same areas used, just in sequence
rather than simultaneously?

e Modeling has some symbolic activity, and this should be revealed by sub-
tracting type-identification responses. Where does this take place, and is
it essentially the same for all problem types?

e The symbolic aspect of modeling seems not to interfere with other parts of
the process, as long as no analysis is done. Is this true on the neural level,
or does it reveal interference too mild to be obvious?

2.2.5. Further discussion. The immediate cognitive benefit of the task-separated
version is that translation and analysis are both routine and reliable, and can be
extended. Adding another layer, for instance if Brad goes back to Jen and there is
another redistribution of bread, could easily be done in the task-separated version
but would be a serious challenge with the gestalt approach.

Modeling also has conceptual benefits. The model displays the mathematical
structure as a recurrence relation rather than a sequence of arithmetic operations.
Similar models describe superficially different problems, showing the underlying
unity and demonstrating the power of abstraction. It can be connected to other
methodologies, for instance vectors and matrices: set C' = (A4, B) and the model

becomes
C(0 = (65 9)

1/2 0
G = ( 1/2 1 )CO
1 1/3
G2 = ( 0 2/3 )Cl
Multiplying the coeflicient matrices gives a direct description of output from input
and enables exploration of the relationship. Is there an initial distribution that
leads to exactly the same final distribution? In another direction, one can also see
how a large number of “players” could give a cellular automaton.
Finally, modeling can be a rich activity even when students cannot analyze the
model. For instance as soon as ‘rate of change’ is introduced they could model phys-

ical systems as differential equations, and then see computer graphs of solutions.
Or they might be motivated to learn relevant analytic techniques.

2.3. Interference from customary usage of parentheses. Grouping of sub-
expressions is an essential part of the structure of most mathematical expressions.
Further, parsing expressions should follow this structure from the outside in: locate
outermost groups and their relationships, then find immediate subgroups of these,
and so on down to indivisible components.

Customary usage interferes cognitively with mathematical work in two ways:

e The customary parsing order used in reading (left to right in English) is
almost always different from mathematical parsing order.

e The customary parenthesis notation does a bad job representing grouping;:
the opening ‘(’ and closing ‘)’ of a group are mathematically connected, but
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they have to be found by preliminary parsing (usually using reading order)
because they are not notationally connected.

Current practice in elementary education is to avoid the issue by avoiding the use
of grouping, and largely sticking with reading parsing order. This has unfortunate
consequences:

e Most expressions cannot be written without grouping notation, so scope is
very limited.

e On-the-fly arithmetic is often necessary to avoid intermediate expressions
that require grouping. The task-separated multiplication algorithm used in
§2.1, for instance, requires extravagant use of parentheses. As a result the
cognitive costs of task-switching cannot be avoided.

e Parenthesis-avoidence is embedded in goals: the customary meaning of
“simplify” is essentially “find an equivalent expression without parenthe-
ses”. This interferes with more intelligent goals in later work.

e Students do not learn how to parse non-trivial mathematical expressions.

We suggest fixing the notation rather than avoiding it. In 3.1.4 the underbrace
used in §2.1.2 to indicate outcomes of evaluation also connects parentheses. This is
not a good general solution because the underbrace is a powerful way to indicate
subexpressions being manipulated, and these subexpressions usually do not corre-
spond to parentheses. A better approach would be to join matching parentheses

with an underline:
A+B(C—-D(E+F)).

This seems to address the problems, and feeds directly into underbrace processing
illustrated above.

It is quite easy to design experiments to probe the effects described above. How-
ever no experiment is suggested here because this is a complex issue, and we have
not identified a key or especially revealing special case.

2.4. Interference from customary integer names. The English name for 513
is “five hundred thirteen”. This might be shortened to “five thirteen”, but not
to “five one three”. It seems likely this interferes with mental arithmetic in two
ways: first through overhead in translating 13 to “thirteen” and back, and second
because “thirteen” is a cognitive unit that has to be disassociated into two digits
for arithmetic processing.

The proposal is to see if the use of “math names” for integers to reduce cogni-
tive overhead associated with customary names improves modest mental addition.
The math name is simply the sequence of names of the digits: 513 is “five one
three” for example. The other novelty is to use short-term persistence of verbal
working memory to store the running total, to reduce interference with single-digit
operations.

This trial requires transparently internalized single-digit addition; see the com-
ment in the experiment description.

2.4.1. Ezxample. To do the addition 367 + 12 4 57 do the following;:

(1) say “three six seven” out loud, to read it into verbal working memory;

(2) next add the 1 digit in 12 to the running total. Unless there is an overflow
this changes only the 10* digit, so the new total will be “three, (new digit),
seven”. Begin by saying “three”, then start with the 6 from the running
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total, add 1 and say “seven”, and finish with “seven” from the running
total. The digits said out loud are the new running total.

(3) next add the 2 in 12. This usually changes only the 10° digit in the running
total so first say “three seven” from the current total, start with the 7 from
the running total, count up 2 and say “nine” out loud.

(4) now proceed to the 5 digit in 57. The verbal running total is “three seven
nine” and the first task is to add 5 to the 7 in the 10! digit. There are two
possibilities. If you see 7 + 5 will produce an overflow then increment the
next digit to the left and say “four”. If awareness of impending overflow is
not this transparent then begin with “three”, think ‘7 + 5 = 12’ and then
overwrite the “three” by saying “four”. In either case the next out-loud
digit is “two”, followed by “nine” from the running total.

(5) finally add the 7 digit in 57. Current total is “four two nine”. Begin with
“four” from the total, and deal with overflow as above.

In this context the interference-reducing strategies can be made more explicit. First,
the digits are added one at a time, so using math names avoids conflict with com-
mon names that combine digits. Second, in most people verbal short-term memory
is distinct from the working memory used for single-digit operations (see comment
below in ‘Long-term goals’, however). It may take practice to access it indepen-
dently. For instance in the second step above, after the addition one must recall
the final digit ‘seven’ that was stored before the operation. It might help to think
‘what was the final digit I heard myself say?’

Another helpful learning strategy is to refresh the running total between major
steps. For instance the operation 367 4+ 12 ends saying “three seven” and then
“nine” while adding the 2 digit. Repeating “three seven nine” before beginning the
next step helps prevent erosion during preparation for the next step.

2.4.2. Fxperiment. The plan is to compare accuracy and neural activity of mental
addition using customary methodology, and with the method described above.

Subjects should be screened for automatic facility with single-digit sums, done
in a way that does not require short-term verbal memory (see below

In the first imaging trial subjects are asked to do tasks mentally (no external
working memory) using customary methodology. Tasks (described below) are pre-
sented visually and answers are given verbally. There are no time constraints and
they are asked to be as accurate as possible.

Subjects are then taught the reduced-interference procedure described above,
and practice enough to become reasonably proficient. The imaging trial is then
repeated with this methodology.

2.4.3. Outcomes, and task selection. The reduced-interference version should en-
able significantly higher accuracy for some problem types. For instance with prac-
tice it should be possible to start with a four-digit integer and add ten two-digit
integers, a feat that is quite hard to do accurately with traditional methods.

Tasks should be designed so the two methods have clear differences in outcomes
and imaged activity. With high-school or beginning-college students it seems likely
that adding three 2-digit integers to a 3-digit integer (e.g. 367+ 12+ 57+ 24) would
do this, but task design should be explored with preliminary trials.

2.4.4. Long-term goals. The real question is if using ‘math names’ for integers from
the very beginning would make arithmetic considerably more accessible for young
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children. The proposal concerns an analogous task for an age group that is easier to
work with, as a starting point. This analogous task (mentally adding ten two-digit
integers to a four-digit integer) is not itself a high-priority skill.

I describe an example because it relates to screening for the trial. A strategy for
single-digit addition is to count up using short-term verbal memory as a counting
register. For instance to add 3 to the 10! digit of 567, start with “five six seven”
and increment three times: “five seven seven”, “five eight seven”, “five nine seven”.
But doing single-digit addition this way would conflict with use of verbal memory
for the running total in multi-digit addition, so subjects who do this should be
disqualified.

This is the meaning of screening for “automatic facility”. Even people who learn
single-digit addition this way should eventually internalize it in ways that leaves
verbal memory available, just as most people who learn to read by sounding out
words eventually stop actually making sounds. It may involve imagining counting
out loud, but use of a ‘mental voice’ seems not to overwrite actual vocalization.

3. SUBLIMINAL LEARNING AND REENFORCEMENT

Human brains are complex, and the relative lack of integration in childrens’
brains means early learning has additional complexity. The fact is well-known but
many of the details are invisible to adults. The proposals concern subliminal learn-
ing of algebraic structure in by-hand arithmetic, and reenforcement of qualitative
geometric structure in by-hand graphing of functions. Both of these are usually
lost in calculator-oriented programs. The goal is to understand these well enough
to design programs in which subliminal learning and technology can coexist.

3.1. Subliminal algebra in integer multiplication. The first part of the ex-
periment compares multiplications done by hand and with a calculator. This is
to establish bases for comparison in the second part, and to compare the by-hand
activity with algebraic manipulation. The second part compares two versions of
a task-separated algorithm: one by hand, and one with primitive computational
support. See the discussion for explanation.

3.1.1. Ezperiment, part one. Subjects should be high school or beginning college
students, with reasonable facility with both calculators and hand arithmetic.

The tasks are to find 3 x 3-digit products (e.g. 946 x 735) either by hand using the
method they were taught in school, or with a calculator, as directed. Answers should
be written in either case. They should be told that accuracy is more important
than speed.

3.1.2. Discussion, part one. The number of digits is chosen so by-hand work will
fully engage the algorithmic structure, but not be overwhelmed by written inter-
mediates.

Neural activity in the calculator case should be input/output and translation
of digits to key presses. Little or no numerical or symbolic activity is expected.
By-hand multiplication should show input-output, number-fact recall, and organi-
zational activity. The interesting questions concern the organizational activity and
errors; see the discussion for part two.
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3.1.3. Experiment, part two. Subjects are taught to use a task-separated multipli-
cation algorithm modeled on polynomial multiplication, and a final assembly (see
below for notation and an example). The experiment has two versions:
e Use the algorithm to reduce 3 x 3-digit products to 1 x 1-digit products and
additions. Carry these out by hand.
e Use the algorithm with 2-digit blocks (see 3.1.5) to reduce 6 x 6-digit prod-
ucts to 2 x 2-digit products and additions. Carry these out with a calculator.

3.1.4. Single-digit algorithm. The place-value notation describes integers as poly-
nomials in powers of ten with single-digit coefficients. For example 946 = 9z2 +
4x' + 62°, evaluated at x = 10. The plan is to multiply using the polynomial
algorithm of 2.1.2, then evaluate at powers of ten. Some care with notation is
necessary.
We can avoid writing numbers explicitly as polynomials, by writing the exponent

over the digit?. For instance to compute 946 x 735 write

210 210

946 x 735

Next write a template for the organizational step:

4 3 2 1 0
* ( )+ * + % + % + % ( )
—— ——

Note that parentheses are connected by underbraces that will eventually be used to
indicate outcomes. The polynomial model only has the parentheses at this stage,
but disconnected parentheses are problematic in elementary education (see 2.3).

2
The notation here uses ¥ as a shorthand for 102, but it is not clear this is a good
idea.
Collect coefficient products for each total coefficient 0—4:

O N+il93+4.7|+¥(05+4.346-7|+%[4-516-3|+%(6-5)
~—— ~——r

Then do the multiplication and addition (in separate stages):

4 3 2 1 0
% (9-7)+ * &3+iﬁ + * &3+iﬁ+gﬁ + * &E+Q§ +x (6-5)
64 27 28 45 12 42 20 18 30
55 99 38
Finally, assemble the pieces by writing them in offset rows and adding:
0 310
1 318
2 919
3 515
4 163
sum (695|310

2This is a compressed notation for computation, not general purpose. A free-standing mono-

2
mial 9 - 102 should be written that way, not as 9.
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The left column contains the exponent, which is also the offset.

3.1.5. Block algorithm. Multiplication using 2-digit blocks begins by expressing
integers as polynomials in 10? with 2-digit coefficients. For instance 638521 =
6322 + 85! + 2120, with = 100. A 6 x 6-digit product thus becomes a 3 x 3-block
product, and uses the same format as above.

Example: Use 2-digit blocks and a calculator to find 638521 x 997201.

As above we avoid writing explicit polynomials by spliting into blocks and recording
the exponent over each block:

2 1 0 2 1 0
63 8521 x 99 72 01
Next collect coefficient products for each total coefficient 0—4, and do the coefficient
arithmetic with a calculator:
4 . 3 . . 2 . . . ...
100%(63 - 99) + 100° (63 - 72+ 85 - 99) +100° (63 - 01 + 85 - 72+ 21 - 99) +
6237 4536 8415 63 6120 2079

12951 8262
Note we are explicitly writing powers of 100 instead of the shorthand used in the
single-digit case.
The final step is to assemble the pieces by writing them in offset rows and adding,
as above.

3.1.6. Discussion. The traditional algorithm has been optimized for production use
by experienced users, by minimizing the writing needed. Essentially any modifi-
cation will be less efficient. But production arithmetic is no longer done by hand,
so improved cognitive benefits may well justify some loss of efficiency. The goal of
this experiment is to assess the cognitive benefits of the expanded algorithm.

In actual practice the efficiency/clarity tradeoff should mean that many fewer
problems are assigned, but a success rate of 100% (after locating and correcting er-
rors) would be expected. The presumption above is that single-digit multiplications
would be done mentally, but see the next section for an alternative.

The two-digit block version would be used to lead students (subliminally) to
separate the structural pattern from the blocks (i.e. not think of the algorithm as
something special about digits). The result should be an effective template for
multiplication of polynomials or other compound expressions in algebra.

Finally, advanced students, or group projects, can use the 4-digit block analog
to multiply integers with 15 or more digits using ordinary calculators; see §3.1.1 of

[16](a).

3.2. Subliminal learning of number facts. The goal is to have students learn
single-digit products subliminally and in context rather than by explicit memoriza-
tion.

The context is the task-separated algorithm described in §3.1.4. Students would
be given a multiplication table on a card, see Figure 1, and given multiplication
problems beginning with 1 x 1-digits and working up to 3 x 3. In multi-digit cases
they would do the organizational step to reduce to single-digit products. Then they
would do the batch of single-digit products, using the card for ones they do not
remember. Remembering has payoffs in faster work and avoiding attention breaks.
If cards and procedures are well-designed for subliminal assimilation then children
would learn these fairly quickly and painlessly.
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Behavioral studies can incrementally improve design of cards and procedures.
The job of neuroscience is to guide improvements that educators will not reach by
incremental changes. Examples illustrated in the card in Figure 1:

e Students should be instructed to read the entry out loud each time they use
the card, to provide verbal reenforcement and because most people store
multiplication facts in verbal memory.

e The entries on the card are complete segments to be read, not just the
answer.

e Entries are designed for accurate recall. For instance x7,5;35 for 7x5 = 35
begins with the operation (x) because beginning with 7 invites confusion
with 745 = 12.

e Two-digit answers should probably be read as digits rather than customary
names, to avoid translation overhead (§2.4).

e “Equals” is omitted to shorten the entry and because it is redundant in
context. Emphasis can be used as a substitute to clarify the separation
between input and output, e.g. read x7,5;35 as “times seven, five; three
five”.

Finally, neuroscience studies have confirmed that incorrect internalizations quickly
become very difficult to correct [5] [3]. It is therefore vital that they be found and
fixed as soon as possible. To accomplish this, every assignment be checked for
correctness, and students required to locate and correct errors in their work record.
(Recall that this approach would use fewer assignments than is now the custom.)
Always having to find errors also provides consistent reenforcement for accuracy
and good work habits.

2| x2,2:4 | x2,3;6 | x2,4;8 | x2,5;10 | x2,6;12 | x2,7;14 | x2,8;16 | x2,9;18
3| x3,2;6 | x3,3;9 | x3,4;12 | x3,5;15 | x3,6;18 | x3,7;21 | x3,8;24 | x3,9;27
4| x4,2;8 | x4,3;12 | x4,4;16 | x4,5;20 | x4,6;24 | x4,7;28 | x4,8;32 | x4,9;36
51 %x5,2;10 | x5,3;15 | x5,4;20 | x5,5;25 | x5,6;30 | x5,7;35 | x5,8;40 | x5,9;45
6| x6,2;12 | x6,3;18 | x6,4;24 | x6,5;30 | x6,6;36 | x6,7;42 | x6,8;48 | x6,9;54
T X7,2;14 | x7,3;21 | x7,4;28 | x7,5;35 | xX7,6;42 | x7,7;49 | xX7,8;56 | X7,9;63
8| x8,2;16 | x8,3;24 | x8,4;32 | x8,5;40 | x8,6;48 | x8,7;56 | x8,8;64 | x8,9;72
9| x9,2;18 | x9,3;27 | x9,4;36 | x9,5;45 | x9,6;54 | x9,7;63 | x9,8;72 | x9,9;81

Ficure 1. Multiplication Card

3.2.1. Experiment. Most of the neuroscience input for this topic will be inference
from other studies (e.g. put the operation first). Experiments like the one suggested
here might fine-tune the ideas, but serious evaluation must wait on classroom trials.

Subjects would be children (perhaps fourth grade) who are successful with stan-
dard arithmetic. The task is to perform the organizational step of the task-
separated multiplication algorithm, and use the multiplication card to carry out
the multiplication step. The addition step would be omitted. There should be
enough pre-trial practice to learn the procedure but not enough to internalize the
card material. Then subjects would be imaged working problems, and locating and
correcting errors in incorrect problems.
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The first objective is to track internalization of the table. These students will
already know single-digit products in another format, but if they are instructed to
use the cards (especially reading entries out loud) then they will probably internalize
the new format rather than translate what they already know. Patterns in successful
internalization might help refine the procedure.

The second and more important objective is to track error handling. It is well-
established that internal uncertainty about correctness causes delays and unusual
patterns of activity [7, 6, 4, 17]. For operational purposes we call an internalization
“bad” if it is incorrect but is so firmly embedded that it does not provoke this
error-related activity. It is urgent that incorrect internalizations be identified and
fixed before they go bad. However, little is known about the process or the size of
the window of opportunity.

e What is the repetition rate of errors during a session if error feedback is not
received until the next session? How does internal error awareness change
with repetition? Sessions should involve 30—40 problems for this.

e Compare this with correctness feedback and error correction after each
problem.

The final question concerns durability. Durable knowledge requires practice well
beyond achieving accurate performance (cognitive psychologists use the unfortunate
term “overlearned” for this). It will be important to know how much reenforcement
is necessary to achieve durability with this particular task. This might be addressed
with followup studies, but getting reliable conclusions will be difficult: long periods
of disuse will lead to serious interference from standard multiplication habits.

3.3. Kinetic reenforcement of geometric structure. Qualitative geometric
structure is used to explore questions about functions, and to clarify the quantita-
tive information needed for specific questions. For example the curves y = az?" for
a positive and n a positive integer, all have pretty much the same shape. We can
see, for instance, that a straight line will intersect any of them in either two points,
one point (when they are tangent), or no points.

We want to compare a purely visual approach with one that includes reenforce-
ment. The comparison is done by cross-testing so the precise questions addressed
are: how well does kinetic learning transfer to visual testing, and how well does
visual learning transfer to kinetic testing. In fact actual use of qualitative structure
requires hand drawing, so the crucial question concerns visual to kinetic transfer.

The role of neuroscience is to throw light on the mechanisms (or non-mechanisms)
of transfer between domains. To what extent does learning in one mode recruit
activity in regions that are used in testing the other mode? Does recruitment,
or lack thereof, explain success or failure of transfer? Answering these questions
requires imaging the learning activity, not just the testing.

3.3.1. The experiment. Subjects should be non-remedial first-year college students,
as above. The study design depends on the number of subjects that can be tested.

If the number is twenty or fewer then students should be pre-tested to assess
competence in the two learning modes, and assigned to the variant corresponding
their strength. In other words, students from largely-visual technology programs
should be in the visual track, and students from traditional programs should be in
the kinetic track. There should be about the same number in each track.



NEUROSCIENCE EXPERIMENTS FOR MATHEMATICS EDUCATION 21

If the number is significantly greater than twenty then students should still be
pre-tested for reference purposes, but then assigned to tracks at random. This would
allow assessment of cross-training. Do visually trained students adapt reasonably
quickly to kinetic training, for instance?

Training sessions should last between 30 and 60 minutes, with at least three
short quizzes to reenforce learning and familiarize students with the quiz format. It
should be possible to repeat at least the first subsection if the corresponding quiz
outcome is unsatisfactory. Students should be imaged during the training sessions.
Students in both tracks should be able to do scratch work, and this should be
recorded. See below for sample materials.

Next, students should be imaged taking quizzes, in a one or two day window at
least three days after but within a week of the training session. The first quiz would
be in the mode in which they were trained, to assess retention by comparison with
the final quiz of the training session. The second quiz would be in the other mode,
to assess transfer of learning.

Genuinely qualitative internalization should include some abstraction and pro-
vide flexibility. The later quizzes should be slightly different from the lesson mate-
rials to probe this.

3.3.2. Discussion. It seems likely that there will be significant differences in learn-
ing and transfer between the two modes. Quantifying this would require much more
careful controls and larger numbers, but this experiment should suggest explana-
tory neural mechanisms that could substantially sharpen design of followups. For
example:

e When kinetic students take visual tests, to what extent is the transfer
internal, or external? External transfer would use visual comparison with
a scratch sketch, while internal would presumably require communication
between kinetic and visual regions, probably mediated by activity in the
prefrontal cortex.

e When visual students take kinetic tests (i.e. are asked to draw something),
does the learning transfer, or does the output look like a reproduction
of a recalled visual image? (Sketches by students trained with graphing
calculators are frequently reproductions of a calculator display.) How does
neural activity reflect this?

If kinetic reenforcement is important for durable qualitative learning, then a long-
term goal is to find ways to incorporate kinetic reenforcement in technology-based
programs. This experiment should help make a start on this.

3.3.3. Materials. The experiment requires learning something unfamiliar but rea-
sonably accessible. The proposal is to explore how the shape of a monomial (y = z™)
is modified by addition® of a lower-degree polynomial. This subliminally includes
the qualitative similarity of the families y = z™ for n even, and for n odd.

e The visual version is illustrated (as usual) with graphics generated by com-
puter or calculator. Quizzes are visual multiple-choice.

e The kinetic version is illustrated by videos of hand drawing. Quizzes require
drawing.

3Sketching the product of two function graphs is more useful and interesting, but probably too
involved for use here.
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The following illustrates visual lesson materials:

line, negative
coefficient

odd — degree
monomial

[y, L d
=

Figure 1: sum of y = 2™, n odd, and a line with negative coefficient.
Roughly, adding a line with negative coefficient tilts the graph a bit to the right.
For very large values of x the two graphs are essentially the same.

The following illustrates a visual test item:

pm————
- N

Figure 2: The solid line is the graph of a cubic monomial. Which of the functions
1-4 is the sum of this and a quadratic with negative coefficient? Which is the sum
with a line with positive coefficient?

A corresponding kinetic test item would be: “sketch the graph of a cubic mono-
mial with positive coefficient. On the same graph, sketch the sum of this and a
quadratic monomial with negative coefficient.”
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